ЗАДАЧИ problems.ru | О проекте | Об авторах | Справочник Каталог по темам | по источникам | Поиск | | Проект МЦНМО при участии школы 57 |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 54]
В выпуклом пятиугольнике ABCDE с единичными сторонами середины P, Q сторон AB, CD и середины S, T сторон BC, DE соединены отрезками PQ и ST. Пусть M и N - середины отрезков PQ и ST. Найдите длину отрезка MN.
На каком расстоянии от сторон правильного шестиугольника находится центр окружности, описанной около данного шестиугольника, если известно, что хорда этой окружности, равная 3 удалена от её центра на расстояние, равное 0,5?
Каждая из сторон выпуклого шестиугольника имеет длину больше 1. Всегда ли в нем найдется диагональ длины больше 2?
Стороны правильного шестиугольника раскрашены через одну в красный и синий цвета. Докажите, что сумма расстояний от точки, лежащей внутри шестиугольника, до прямых, содержащих красные стороны, равна сумме расстояний от этой точки до прямых, содержащих синие стороны.
Найдите площадь правильного шестиугольника, описанного около окружности, если известно, что хорда этой окружности, равная 4, удалена от её центра на расстояние, равное 5.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 54] |
© 2004-2007 МЦНМО (о копирайте) | Пишите нам |
Проект осуществляется при поддержке Департамента образования г.Москвы и Московского института открытого образования.
Комментариев нет:
Отправить комментарий