воскресенье, 12 октября 2008 г.

ЛУЧ6: Каталог по темам

Каталог по темам

ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по Класс с по
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 4161]

с решениями


Задача 60463

Тема: [ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2-
Классы: 5,6,7

Разложите на простые множители числа 111, 1 111, 11 111, 111 111, 1 111 111.

Прислать комментарий Решение

Задача 87981

Тема: [ Десятичная система счисления ]
Сложность: 2-
Классы: 5,6,7

Попробуйте найти все натуральные числа, которые больше своей последней цифры в 5 раз.

Прислать комментарий Решение


Задача 87992

Темы: [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 2-
Классы: 5,6,7

Одно трехзначное число состоит из различных цифр, следующих в порядке возрастания, а в его названии все слова начинаются с одной и той же буквы. Другое трехзначное число, наоборот, состоит из одинаковых цифр, но в его названии все слова начинаются с разных букв. Какие это числа?

Прислать комментарий Решение


Задача 88027

Тема: [ Делимость чисел. Общие свойства ]
Сложность: 2-
Классы: 5,6,7

Как вы думаете, среди четырех последовательных натуральных чисел будет ли хотя бы одно делиться на 2? А на 3? А на 4? А на 5?

Прислать комментарий Решение


Задача 88045

Темы: [ Числовые таблицы и их свойства ]
[ Шестиугольники ]
Сложность: 2-
Классы: 5,6,7

Заполните свободные клетки "шестиугольника" (см. рисунок) целыми числами от 1 до 19, чтобы во всех вертикальных и диагональных рядах сумма чисел, стоящих в одном ряду, была бы одна и та же.

Прислать комментарий Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 4161]

с решениями


© 2004-2007 МЦНМО (о копирайте)
Пишите нам
liveinternet.ru Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и Московского института открытого образования.

Комментариев нет: